Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Document Type
Year range
1.
Sustain Cities Soc ; 75: 103252, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1356436

ABSTRACT

The evolution the novel corona virus disease (COVID-19) as a pandemic has inflicted several thousand deaths per day endangering the lives of millions of people across the globe. In addition to thermal scanning mechanisms, chest imaging examinations provide valuable insights to the detection of this virus, diagnosis and prognosis of the infections. Though Chest CT and Chest X-ray imaging are common in the clinical protocols of COVID-19 management, the latter is highly preferred, attributed to its simple image acquisition procedure and mobility of the imaging mechanism. However, Chest X-ray images are found to be less sensitive compared to Chest CT images in detecting infections in the early stages. In this paper, we propose a deep learning based framework to enhance the diagnostic values of these images for improved clinical outcomes. It is realized as a variant of the conventional SqueezeNet classifier with segmentation capabilities, which is trained with deep features extracted from the Chest X-ray images of a standard dataset for binary and multi class classification. The binary classifier achieves an accuracy of 99.53% in the discrimination of COVID-19 and Non COVID-19 images. Similarly, the multi class classifier performs classification of COVID-19, Viral Pneumonia and Normal cases with an accuracy of 99.79%. This model called the COVID-19 Super pixel SqueezNet (COVID-SSNet) performs super pixel segmentation of the activation maps to extract the regions of interest which carry perceptual image features and constructs an overlay of the Chest X-ray images with these regions. The proposed classifier model adds significant value to the Chest X-rays for an integral examination of the image features and the image regions influencing the classifier decisions to expedite the COVID-19 treatment regimen.

2.
Cmc-Computers Materials & Continua ; 67(2):2430-2446, 2021.
Article in Spanish | Web of Science | ID: covidwho-1140886

ABSTRACT

In several countries, the ageing population contour focuses on high healthcare costs and overloaded health care environments. Pervasive health care monitoring system can be a potential alternative, especially in the COVID-19 pandemic situation to help mitigate such problems by encouraging healthcare to transition from hospital-centred services to self-care, mobile care and home care. In this aspect, we propose a pervasive system to monitor the COVID'19 patient's conditions within the hospital and outside by monitoring their medical and psychological situation. It facilitates better healthcare assistance, especially for COVID'19 patients and quarantined people. It identifies the patient's medical and psychological condition based on the current context and activities using a fuzzy context-aware reasoning engine based model. Fuzzy reasoning engine makes decisions using linguistic rules based on inference mechanisms that support the patient condition identification. Linguistics rules are framed based on the fuzzy set attributes belong to different context types. The fuzzy semantic rules are used to identify the relationship among the attributes, and the reasoning engine is used to ensure precise real-time context interpretation and current evaluation of the situation. Outcomes are measured using a fuzzy logic-based context reasoning system under simulation. The results indicate the usefulness of monitoring the COVID'19 patients based on the current context.

SELECTION OF CITATIONS
SEARCH DETAIL